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Formulation of the problem

PROBLEM

div v = 0

v,t + div(v ⊗ v)− div S = −∇p + b

G(S,D) = O

}
in QT

v · n = 0

g((Sn)τ , vτ ) = 0

}
on ΣT

v(0, ·) = v0 in Ω

DATA

I Ω ⊂ R3 bounded, open set with ∂Ω ∈ C1 and n : ∂Ω→ R3

I T > 0 and QT := (0,T )× Ω, ΣT := (0,T )× ∂Ω

I v0, b

I G and q - constitutive functions in the bulk and on the boundary
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Main questions addressed

FIRST ORDER SYSTEM for the unknown triplet (v, p,S)

div v = 0

v,t + div(v ⊗ v)− div S = −∇p + b

G(S,D) = O

}
in QT

v · n = 0

g((Sn)τ , vτ ) = 0

}
on ΣT

v(0, ·) = v0 in Ω

AIM
I To establish large data existence of solution for any set of data (Ω, T , v0, b)
and for robust class of constitutive equations described by G and g
I To develop theory with p ∈ L1(QT ) - important

heat-conduting incompressible fluids

one/two equation turbulence model

incompressible fluids with pressure and shear-rate dependent viscosity

corresponding numerical methods and their analysis
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Basic information

A PRIORI ESTIMATES

Multiplying the 2nd Eq. by v (b ≡ 0)

1
2
∂|v|2
∂t + div( 1

2 |v|
2v)− div(Sv) + S · D = −div(pv)

Since v · n = 0, integrating it over Ω leads to

1

2

d

dt
‖v‖2

2 +

ˆ
Ω

S · D dx +

ˆ
∂Ω

(Sn)τ · vτ dS = 0

The simplest relations

S = 2ν∗D in QT ν∗ > 0

(Sn)τ = α∗vτ on ΣT α∗ > 0

(z)τ := z− (z · n)n 2D = 2D(v) := ∇v + (∇v)T
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Importance of G(S,D) = O

T := −pI + S = ( 1
3
trT)I +

(
T− ( 1

3
trT)I

)
2D = ∇v + (∇v)T

D =
α(|S|2)

2ν(|D|2)

(|S| − τ∗)+

(τ∗ + (|S| − τ∗)+)
S with τ∗ ≥ 0

x+ = max{x , 0}, ν and α are positive functions

If τ∗ = 0 the above formula includes as special cases

Navier-Stokes fluids: S = 2ν∗D
power-law fluids: S = 2ν∗(β∗ + |D|2)

r−2
2 D

stress power-law fluids: D = 1
2ν∗

(γ∗ + |S|2)
r′−2

2 S

r ∈ (1,∞), r ′ := r/(r − 1), and ν∗, β∗, γ∗ are positive constants
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Importance of G(S,D) = O

D =
α(|S|2)

2ν(|D|2)

(|S| − τ∗)+

(τ∗ + (|S| − τ∗)+)
S with τ∗ ≥ 0

x+ = max{x , 0}, ν and α are positive functions

If α ≡ 1 and τ∗ > 0 the above formula is equivalent to

|S| ≤ τ∗ ⇔ D = 0 and |S| > τ∗ ⇔ S =
τ∗D
|D| + 2ν(|D|2)D

and includes as special cases

Bingham fluids (1923): ν(s) = ν∗, α(s) = 1 and τ∗ > 0

Herschel-Bulkley fluids (1926): ν(s) as for power-law fluids, α(s) = 1 and τ∗ > 0
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Importance of G(T,D) = O

NAVIER-STOKES FLUID can not describe several phenomena that have been observed
and documented experimentally:

shear thinning, shear thickening - ν depends on |D|2

pressure thickening - ν depends on p

the presence of activation or deactivation criteria - “jump” singularities

the presence of the normal stress differences at simple shear flows

stress relaxation

non-linear creep

responses of anisotropic fluids, . . .

G(T,D) = O has potential to describe four of them - rich structure.

Models connected with names like Ostwald (1925), de Waele (1923), Carreau (1972),

Yasuda (1979), Eyring (1958), Cross (1965), Sisko (1958), Matsuhisa and Bird (1965),

Glen (1955), Blatter (1995), Barus (1893), Bingham (1922) etc.
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Considerations leading to the assumptions on G(·, ·)

The quantity S · D for S = 2ν∗D ⇐⇒ D = 1
2ν∗

S

S · D = 2ν∗|D|2

= 1
2ν∗
|S|2

= ν∗|D|2 + 1
4ν∗
|S|2

= ψ(|D|) + ψ∗(|S|) ψ∗(s) = max
t∈[0,∞)

(s · t − ψ(t))

Similarly and explicitly for S = 2µ∗|D|r−2D ⇐⇒ D = [2µ∗]−
1

r−1 |S|
2−r
r−1 S

S · D = |D|r = |S|r/(r−1)

= S·D
r + S·D

r ′ = |D|r
r + |S|r

′

r ′ = ψ(|D|) + ψ∗(|S|)
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Monotone and maximal monotone response

Power-law fluids (similarly also stress power-law fluids and their generalizations)

S = 2µ∗|D|r−2D ⇐⇒ D = [2µ∗]−
1

r−1 |S|
2−r
r−1 S

For all D, E ∈ R3×3(
S̃(D)− S̃(E)

)
· (D− E) ≥ 0 S̃(B) := 2µ∗|B|r−2B

For all S1, S2 ∈ R3×3

(S1 − S2) ·
(
B(S1)− B(S2)

)
≥ 0 , where B(S) := 2µ∗|S|

2−r
r−1 S

Bingham and Herschel-Bulkley fluids

J. Málek (MFF UK) Implicitly Constituted Incompressible Fluids March 6, 2013 9 / 20



Implicit formulation - maximal monotone ψ-graph setting

(S,D) ∈ A ⇐⇒ G(S,D) = 0

Assumptions (A is a ψ-maximal monotone graph):

(A1) (0, 0) ∈ A
(A2) Monotone graph: For any (S1,D1), (S2,D2) ∈ A

(S1 − S2) · (D1 − D2) ≥ 0

(A3) Maximal graph: If for some (S,D) there holds

(S− S̃) · (D− D̃) ≥ 0 ∀ (S̃, D̃) ∈ A

then
(S,D) ∈ A

(A4) ψ-graph: There are c∗ ∈ (0, 1] and g > 0 so that for any (S,D) ∈ A

S · D ≥ c∗(ψ(D) + ψ∗(S))− g or S · D ≥ c∗
(
|D|r + |S|r

′)
− g
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Definition of weak solution to the Problem with Navier’s
slip bcs

Definition

We say (p, v, S) is weak solution to Problem

p ∈ L1(Q)

v ∈ Cweak(0,T ; L2
n,div) ∩ Lq(0,T ; W 1,q

n,div) with D(v) ∈ Lψ(Q)

S ∈ Lψ
∗

(Q)

lim
t→0+

‖v(t)− v0‖2
2 = 0

〈v′,w〉+ (S,D(w))− (v ⊗ v,D(w)) + α∗(vτ ,wτ )∂Ω = 〈b,w〉,+(p, divw) ,

for all w ∈W 1,1
n such that D(w) ∈ L∞(Ω)d×d and a.a. t ∈ (0,T ),

(D(v(t, x)), S(t, x)) ∈ A for a.a. (t, x) ∈ Q.
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Theorem

Theorem

Let A satisfy the assumptions (A1)–(A4) with ψ fulfilling

c1s r − c2 ≤ ψ(s) ≤ c3s r̃ + c4 with r >
6

5

Then for any Ω ∈ C1,1 and T ∈ (0,∞) and for arbitrary

v0 ∈ L2
n,div, b ∈ L2(0,T ; L2(Ω)3) and γ∗ ≥ 0 , (1)

there exists weak solution to Problem.

Novel tools:
(i) structural assumptions on G(T,D) = O
(ii) convergence criterion
(iii) understanding the interplay between the chosen boundary conditions and global
integrability of p
(iv) Lipschitz approximations of Sobolev and Bochner functions

M. Buĺıček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda: On Unsteady Flows of Implicitly Constituted

Incompressible Fluids, SIAM J. Math. Anal., Vol. 44, No. 4, pp. 2756–2801 (2012)
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Methods

subcritical case

Minty’s method
energy equality - v is an addmissible test function

supercritical case

generalized Minty’s method
Lipschitz approximation in Orlicz-Sobolev spaces
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Generalized Minty’s method - Convergence lemma

Assume that

A is a maximal monotone ψ-graph satisfying (A1)–(A4)

{Sn}∞n=1 and {Dn}∞n=1 satisfy for some Q ′ ⊂ Q

(Sn,Dn) ∈ A for a.a. (t, x) ∈ Q ′,

Dn ⇀ D weakly in Lψ(Q ′),

Sn ⇀ S weakly in Lψ
∗

(Q ′),

lim sup
n→∞

ˆ
Q′

Sn · Dn dx dt ≤
ˆ
Q′

S · D dx dt.

Then for almost all (t, x) ∈ Q ′ we have

(S,D) ∈ A

Lemma - Local version
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Importance of g((Sn)τ , vτ ) = 0

b(|vτ |)vτ = a(|(Sn)τ |2)
(|(Sn)τ | − σ∗)+

(σ∗ + (|(Sn)τ | − σ∗)+)
(Sn)τ with σ∗ ≥ 0

x+ = max{x , 0}, a is a positive and b nonnegative functions
which includes as subcases

slip condition: a(s) ≡ 1, b(s) = 0 and σ∗ = 0,

Navier’s slip condition: a(s) = (1− λ)α∗ > 0, b(s) = λ with λ ∈ (0, 1),

threshold slip: a(s) ≡ 1 and σ∗ > 0

Threshold slip condition can be written equivalently as:

|(Sn)τ | ≤ σ∗ ⇔ vτ = 0 and |(Sn)τ | > σ∗ ⇔ (Sn)τ = σ∗
vτ

|vτ |
+ b(|vτ |)vτ

no-slip condition: a(s) = 0
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No-slip versus Threshold slip

Homogeneous Dirichlet boundary conditions are considered as the simplest for
many PDEs

In incompressible fluid dynamical problems, it is open if p ∈ LQT for no-slip
boundary conditions for problems where the viscosity is not constant

The difficulty is due to incompatibility of the no-slip bcs with Helmholtz
decomposition. Indeed for ϕ ∈W 1,r

n

〈 ∂v
∂t
,ϕ〉 = 〈 ∂v

∂t
,ϕdiv +∇h〉

= 〈 ∂v
∂t
,ϕdiv〉 = weak form of balance of linear momentum
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Implicit formulation - maximal monotone q-graph setting

(s, vτ ) ∈ B ⇐⇒ g(s, vτ ) = 0

(B1) B comes through the origin. (0, 0) ∈ B.

(B2) B is a monotone graph.

(s1 − s2) · (v1
τ − v2

τ ) ≥ 0 for all (s1, vτ
1), (s2, v

2
τ ) ∈ B.

(B3) B is a maximal monotone graph. Let (s, u) ∈ R3 ×R3 be given.

If (s̄− s) · (v̄τ − u) ≥ 0 for all (s̄, v̄τ ) ∈ B then (s, u) ∈ B.

(B4) B is a q-graph. For any q ∈ (1,∞) fixed there are d∗ > 0 and n∗ ≥ 0 such that

s · vτ ≥ −n∗ + d∗(|vτ |q + |s|q/(q−1)) for all (s, vτ ) ∈ B .

No-slip boundary condition is excluded by (B4).
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Concluding Remarks

Implicit constitutive theory

robust framework (the same number of quantities capable of describing large class
of material responses) that provides a new look at the fluids with activation or
deactivation criteria in the bulk and/or on the boundary

far reaching consequences to the theoretical foundation of continuum mechanics
and thermodynamics (introduced as an object for a systematic studies by KR
Rajagopal in 2003, and develop further in many publications)

threshold slip is the way how to overcome the troubles connected with the analysis
of unsteady flows subject to homogeneous Dirichlet boundary conditions (no-slip)

for imlicitly constituted fluids characterized by (A1)-(A4) and r > 6/5, we define
the solution and show its large data existence - object to be studied numerically
and computationally. It provides a suitable framework to link (new approaches in)
modeling with analysis of matrix computation to develop efficient numerical
methods

new options how to numerically discretize the problems - some give interesting
results (second order vs. first order PDEs)
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Lid driven cavity with Bingham fluid (J. Hron, J. Málek, J. Stebel, K. Touška)

Unknowns (v, p, S):

−div S = −∇p + b

G(S,D) = O
D(v) = D improves convergence for larger τ∗
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D. Vola, L. Boscardin, J.C. Latché: Laminar unsteady flows of Bingham fluids: a numerical strategy and some

benchmark results, 2003.
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Concluding Remarks

• Implicitly constituted material models: from theory through model reduction to

efficient numerical methods (5 year ERC-CZ project MORE financed by the Ministry of

Education, Youth and Sports)

Team members: Z. Strakoš, E. Feireisl, E. Süli (Oxford), M. Buĺıček, J. Hron,

V. Pr̊uša, O. Souček and M. Vohraĺık (INRIA)

Advisory board members: M. Benzi (Atlanta), K.R. Rajagopal (Texas A&M

University), R. Rannacher (Heidelberg), G. Seregin (Oxford, St. Petersburg)

two postdoc positions since February 2013 taken by 5 postdocs in 2013, Ph.D.

students: J. Papež, M. Řehǒr, J. Žabenský

Workshop: Implicitly constituted materials: Modeling, Analysis and Computation

(Chateau Liblice, November 24 - 27, 2013)

• 13th International School on Mathematical Theory in Fluid Mechanics (Kácov, Czech

republic, May 24 - 31, 2013)
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